Solutions - Midterm Exam

(October 15th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (22 PTS)

a) Complete the following table. The decimal numbers are unsigned: (3 pts.)

Decimal	BCD	Binary	Reflective Gray Code
50	01010000	110010	101011
128	000100101000	1000000	11000000

b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (15 pts.)

	REPRESENTATION								
Decimal	Sign-and-magnitude	1's complement 2's complement							
-17	110001	101110	101111						
-16	1 10000	101111	10000						
-1	11	10	1111						
41	0101001	0101001	0101001						
-37	1100101	1011010	1011011						

c) Convert the following decimal numbers to their 2's complement representations. (4 pts) $\sqrt{-9}$ 25

-9.25			
+9.25 =	01001.01	⇒ -17.25=	10110.11

PROBLEM 2 (10 PTS)

• Sketch the circuit that computes |A - B|, where A, B are 4-bit signed (2C) numbers. For example, $A = 0101, B = 1101 \rightarrow |A - B| = |5 - (-3)| = 8$. You can only use full adders (or multi-bit adders) and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

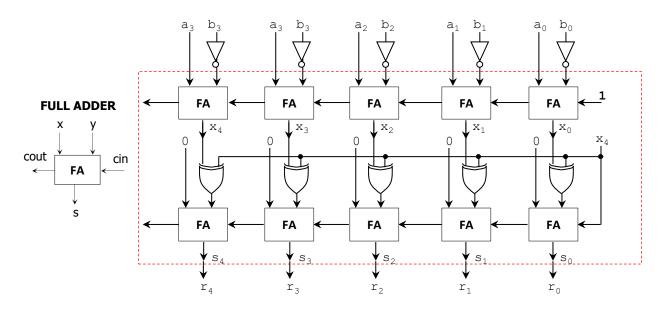
+8.75 = 01000.11

......

 $A = a_3 a_2 a_1 a_0, B = b_3 b_2 b_1 b_0$

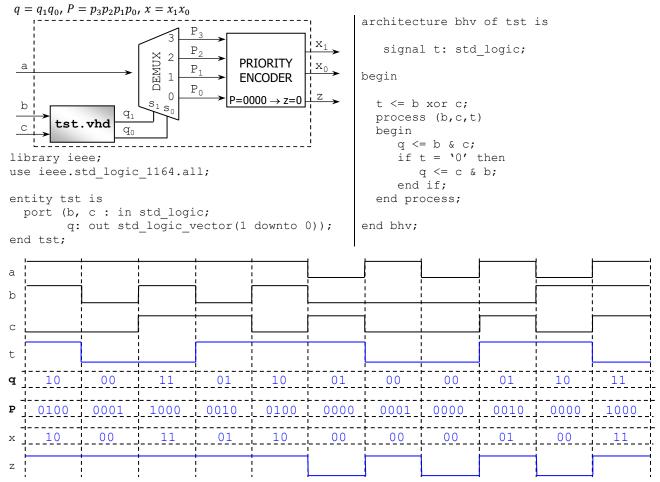
 $A, B \in [-8,7] \rightarrow A, B$ require 4 bits in 2C representation.

- ✓ $X = A B \in [-15,15]$ requires 5 bits in 2C. Thus, we need to zero-extend A and B.
- ✓ $|X| = |A B| \in [0,15]$ requires 5 bits in 2C. Thus, the second operation $0 \pm X$ only requires 5 bits.
 - If $x_4 = 1 \rightarrow X < 0 \rightarrow$ we do 0 X.
 - If $x_4 = 0 \rightarrow X \ge 0 \rightarrow \text{we do } 0 + X$.
- ✓ $R = |A B| \in [0,15]$ requires 5 bits in 2C. Note that the MSB is always 0.



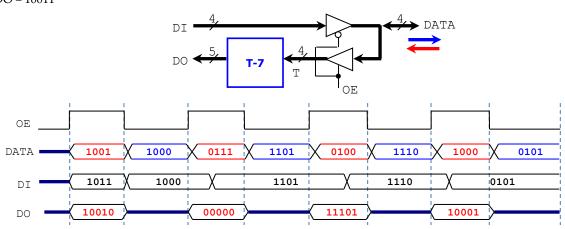
PROBLEM 3 (15 PTS)

• Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.



PROBLEM 4 (11 PTS)

- Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-7, with the result having 5 bits. T is a 4-bit signed (2C) number.
 - ✓ Example: if T=1010:
 DO = 1010-0111 = 11010 + 11001
 DO = 10011



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

PROBLEM 5 (10 PTS)

- A microprocessor has a memory space of 1 MB. Each memory address occupies one byte. 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes.
 - a) What is the address bus size (number of bits of the address) of the microprocessor? Size of memory space: $1 \text{ MB} = 2^{20}$ bytes. Thus, we require 20 bits to address the memory space.
 - b) What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? (1 pt.)
 With 20 bits, the address range is 0x00000 to 0xFFFFF.
 - c) The figure to the right shows four memory chips that are placed in the given positions:
 ✓ Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips. (8 pts)

					Address	~	
0000	0000	0000	0000	0000:	0x00000	0	
0000	0000	0000	0000	0001:	0x00001		256KB
• •	•						200112
0011	1111	1111	1111	1111:	0x3FFFF		
<mark>01</mark> 00	0000	0000	0000	0000:	0x40000	1	
<mark>01</mark> 00	0000	0000	0000	0001:	0x40001		256KB
	•						
0111	1111	1111	1111	1111:	0x7FFFF		
10 00	0000	0000	0000	0000:	0x80000	2	
10 00	0000	0000	0000	0001:	0x80001		256KB
	• •						
1011	1111	1111	1111	1111:	0xBFFFF		
11 00	0000	0000	0000	0000:	0xC0000	3	
1100	0000	0000	0000	0001:	0xC0001		256KB
	• •						
<mark>11</mark> 11	1111	1111	1111	1111:	0xFFFFF		

8 bits Address 0xn 256KB 0x0x 1 256KB ŝ **0x 0**x 2 256KB **0**x 0x 3 256KB

0x

PROBLEM 6 (15 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (6 pts)

b) For the decimal numbers in the figure, perform the signed (2C) 8-bit addition. The operands must be represented in 2's complement arithmetic with 8 bits. Also, complete all the carries and summation bits. Indicate the corresponding decimal number of the 8-bit result.

Does this 8-bit operation incur in overflow?Value of the overflow bit: $C_8 \oplus C_7 = 0$ Value of carry out bit: $C_8 = 1$

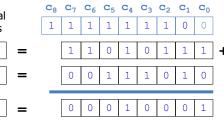
41 = 0x	29 =	1	0	1	0	0	1				
		1	1	1	1	0	0				
2C) 8-bit plement	Decim value					-		-	c ₅	_	
tion bits.	-41		=	:			1	1	0	1	(

Borrow out! \longrightarrow $\stackrel{1}{\overset{1}{\overset{1}{}}}$ $\stackrel{1}{\overset{1}{}}$ $\stackrel{1}{\overset{1}}{}}$ $\stackrel{1}{\overset{1}{}}$ $\stackrel{1}{\overset{1}{}}$ $\stackrel{1}{\overset{1}{}}$ $\stackrel{1}{\overset{1}{}}$ $\stackrel{1}{\overset{1}{}}$ $\stackrel{1}{\overset{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}$ $\stackrel{1}{}}$ $\stackrel{1}{}$ $\overset{1}{}$ $\overset{1}{}}$ $\overset{1}{}}$ $\overset{1}{}}$ $\overset{1}{}$ $\overset{1}{}}$ $\overset{1}{}$ $\overset{1}{}$ $\overset{1}{}}$ $\overset{1}{}$ $\overset{1}{}$ $\overset{1}{}$ $\overset{1}{}$ $\overset{1}{}$ $\overset{1}{}}$ $\overset{1}{}$ $\overset{1}{}}$ $\overset{1}{}$

58

17

 $37 = 0 \times 25 = 1 \ 0 \ 0 \ 1 \ 0 \ 1 -$



c) Perform binary multiplication of the following numbers (they must be represented in 2's complement arithmetic). (3 pts) $\sqrt{-7} \times 9$

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

PROBLEM 7 (17 PTS)

 x_0 y_0 Given the circuit in the figure: • ✓ Implement s_0 using ONLY an 8-to-1 MUX. (5 pts.) $s_0(x_0, y_0, c_0) = x_0 \oplus y_0 \oplus c_0$ $\mathbf{x}_0 \mathbf{y}_0 \mathbf{c}_0$ $\mathbf{c}_1 \ \mathbf{s}_0$ $s_0(x_0, y_0, c_0)$ c_0 1 1 $x_0y_0c_0$ c_1 S_0 ✓ Implement c_1 using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts) $c_1(x_0, y_0, c_0) = x_0 y_0 + x_0 c_0 + y_0 c_0$ $c_1(x_0, y_0, c_0) = \overline{x_0}c_1(0, y_0, c_0) + x_0c_1(1, y_0, c_0) = \overline{x_0}(y_0c_0) + x_0(y_0 + c_0 + y_0c_0)$ $c_1(x_0, y_0, c_0) = \overline{x_0}g(y_0, c_0) + x_0h(y_0, c_0)$ $g(y_0, c_0) = \overline{y_0}g(0, c_0) + y_0g(1, c_0) = \overline{y_0}(0) + y_0(c_0)$ $c_1(x_0, y_0, c_0)$ $h(y_0, c_0) = \overline{y_0}h(0, c_0) + y_0h(1, c_0) = \overline{y_0}(c_0) + y_0(1)$ g

 C_0

 y_0

 x_0